simet.transforms.base.transform¶
simet.transforms.base.transform ¶
Transform ¶
Bases: ABC
Abstract interface for building torchvision transform pipelines.
Implementations should return a torchvision.transforms.Compose that
defines the preprocessing/augmentation steps to apply to each sample
(e.g., PIL Image → Tensor normalization).
Subclassing
Implement get_transform() to construct and return the composed
transform. Keep any stochastic behavior (e.g., random crops) inside
the returned pipeline, not in get_transform() itself.
Example
import torchvision.transforms as T class InceptionTransform(Transform): ... def get_transform(self) -> Compose: ... return T.Compose([ ... T.Resize(342), ... T.CenterCrop(299), ... T.ToTensor(), ... T.Normalize(mean=[0.485, 0.456, 0.406], ... std=[0.229, 0.224, 0.225]), ... ])
get_transform
abstractmethod
¶
get_transform()
Return the composed transform pipeline to apply per sample.
Returns:
| Name | Type | Description |
|---|---|---|
Compose |
Compose
|
A torchvision |
Compose
|
preprocessing/augmentation steps. |
Source code in simet/transforms/base/transform.py
31 32 33 34 35 36 37 38 39 | |