simet.schemas.loader¶
simet.schemas.loader ¶
LoaderSchema
dataclass
¶
LoaderSchema(real_provider, synth_provider, provider_transform, feature_extractor)
Schema describing how to build a DatasetLoader (providers + transforms + FE).
Encapsulates the components needed to construct the data loading and feature-extraction pipeline: one provider for real data, one for synthetic, a transform used for provider/datalaoder preprocessing, and the feature extractor configuration.
Attributes:
| Name | Type | Description |
|---|---|---|
real_provider |
ProviderSchema
|
Configuration for the real dataset provider. |
synth_provider |
ProviderSchema
|
Configuration for the synthetic dataset provider. |
provider_transform |
TransformSchema
|
Transform applied when constructing the provider-backed datasets and their dataloaders (i.e., preprocessing seen by the feature extractor). |
feature_extractor |
FeatureExtractorSchema
|
Feature extractor selection/config (e.g., |
Example
cfg = LoaderSchema( ... real_provider=ProviderSchema(type="local_binary", data_path="data/real"), ... synth_provider=ProviderSchema(type="local_binary", data_path="data/synth"), ... provider_transform=TransformSchema(type="inception"), ... feature_extractor=FeatureExtractorSchema(type="inception_v3"), ... ) cfg.real_provider.type 'local_binary'
Notes
real_providerandsynth_providershould be symmetric (same structure), differing mainly in their data paths.- The
provider_transformshould match the expectations of thefeature_extractorto avoid feature drift (e.g., input size/normalization).