simet.providers.subsampled_provider¶
simet.providers.subsampled_provider ¶
SubsampledProvider ¶
SubsampledProvider(data_path=Path(), dataset=None)
Bases: Provider
Provider that wraps an already-built VisionDataset.
This provider is a thin adapter: instead of discovering data on disk,
it simply returns a preconstructed VisionDataset (e.g., a subsampled
or filtered view) when get_data(...) is called. The transform argument
is ignored on purpose—assume the wrapped dataset already applies the
desired preprocessing.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_path
|
Path
|
Kept for API parity with |
Path()
|
dataset
|
VisionDataset
|
The dataset instance to expose (e.g., a |
None
|
Attributes:
| Name | Type | Description |
|---|---|---|
dataset |
VisionDataset
|
The wrapped dataset returned by |
Notes
- Because
transformis ignored, make sure thedatasetyou pass is already configured with the correct transforms. data_pathis retained for uniformity but is not consulted.- If
datasetis omitted, the defaultVisionDataset()placeholder will likely raise at runtime; in practice you should always pass a concrete dataset.
Example
from torch.utils.data import Subset from torchvision.datasets import ImageFolder import torchvision.transforms as T
base = ImageFolder("data/train", transform=T.ToTensor()) small = Subset(base, indices=list(range(1000))) # subsampled view provider = SubsampledProvider(dataset=small) ds = provider.get_data(transform=... ) # transform ignored len(ds) 1000
Source code in simet/providers/subsampled_provider.py
51 52 53 54 55 56 57 | |
get_data ¶
get_data(transform)
Return the wrapped dataset; transform is ignored.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
transform
|
Transform
|
Unused. Present for interface compatibility. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
VisionDataset |
VisionDataset
|
The dataset provided at construction time. |
Source code in simet/providers/subsampled_provider.py
59 60 61 62 63 64 65 66 67 68 | |